
TEMPLATE DESIGN © 2008

www.PosterPresentations.com

 Comparing the different approaches for 5 state-holders and 100 crawler

Distributed Large-Scale Crawling of Rich Internet Applications

Khaled Ben Hafaiedh, Gregor v. Bochmann, Guy-Vincent Jourdan, Iosif Viorel Onut

School of Electrical Engineering and Computer Science - University of Ottawa

Introduction – Traditional vs. Rich Internet Applications

Aim

 Due to the large size of RIAs and therefore the high CPU usage required for the crawl, distributed

centralized crawling has been introduced to reduce the amount of time required to crawl RIAs.

 It consists of running multiple crawlers simultaneously and sharing the searching space in a

single storage unit, called the coordinator.

Challenges

 Scalability: The coordinator may become a bottleneck when it is accessed simultaneously by a

high number of crawlers.

 Fault tolerance: A failure occurring within this unit may result in the entire loss of the graph

under exploration.

Architecture

 A peer-to-peer crawl system composed of multiple state-holders in the form of a chordal ring.

 DOM states are partitioned into disjoint sets, each of which is handled by a distinct state-holder.

 Each state-holder is associated with a certain number of crawlers responsible of executing

events.

 The chordal ring allows for:

 Boosting look-up queries in the ring

 knowledge sharing among state-holders during the crawl using skip links.

Acknowledgments

This work is supported in part by IBM and the Natural Science and Engineering Research Council of

Canada.

DISCLAIMER

The views expressed in this poster are the sole responsibility of the authors and do not necessarily

reflect those of the Center for Advanced Studies of IBM.

Motivation

Conclusion & Future Work

 The experimental results show that the Forward-Exploration approach is more efficient than the

Reset-Only, the shortest path with local knowledge and the shortest path with large knowledge.

 Some of the areas that we are currently working on are:

• Fault-tolerance.

• Applying other crawling strategies such as the menu model, the component-based model and

the probabilistic strategy.

Choosing the next event to explore from a different state

Asynchronous Communication Pattern (in RIAs)

User Interaction Partial Page Update Partial Page UpdatePartial Page Update

Server Processing Server Processing

Request Request Request

Response

Response

Response

Figure 1. Asynchronous Communication Pattern in RIAs

We introduce a distributed peer-to-peer architecture for crawling RIAs composed of multiple controllers,

referred to as state-holders. Each state-holder maintains a partial model of the application, where a high

number of crawlers may be associated with each state-holder. The following contributions are considered:

 Fault-Tolerance: The distribution of responsibilities for the states among multiple state-holders in the

underlying P2P network, where each state-holder maintains a portion of the application model, so that

there is no single point of failure.

 Scalability: A scalable system where a high number of crawlers may be associated with each state-

holder, without having a central bottleneck that may result from a single database simultaneously

accessed by all crawlers.

 Load balancing: The balance of the workload among crawlers.

 Knowledge sharing: Defining and comparing different knowledge sharing schemes for efficiently

crawling RIAs.

Assumptions

Distributed RIA Crawling

The state-holder

 State-holders do not know the number of state-holder in the network.

 Each state-holder maintains a unique identifier, which is used to distinguish among distinct state-

holders in the peer-to-peer network.

 Each DOM state has a unique identifier, which is used to identify the position of the state-holder

that is responsible for it in the peer-to-peer system.

The crawler

 Each crawler maintains a unique identifier, allowing a state-holder to distinguish among crawlers

that are associated with it.

 Each crawler may locally maintain a copy of the RIA application, allowing for :

 The speed-up of crawling large-scale applications.

 Avoiding a central bottleneck resulting from a single RIA application simultaneously accessed

by multiple crawlers.

Methodology

The greedy strategy

 The basic greedy strategy consists of exploring an event from the current state if there is any

unexplored event. Otherwise, the crawler may execute an unexplored event from a different state,

until all transitions are traversed.

 In the centralized crawl system, each crawler may retrieve the required graph information by

communicating with the single coordinator, and then executes a single unexecuted event from its

current state if such an event exists, or may move to another state with some unexecuted events

based on the information available on the single database.

 In the P2P environment, the state-holder responsible of leveraging access to a given state is

contacted by each crawler to execute a single unexecuted event on this state. Upon executing an

event, a crawler may reach a new state and thus communicate with its corresponding state-

holder requesting for a new event execution.

 If no event can be executed on the current state of the crawler, the crawler may communicate

with other state-holders to execute events from another state.

Challenges

 Efficiency: Crawlers must efficiently execute the graph transitions by only communicating with as

few state-holders as possible.

 Termination detection: An idle crawler cannot know a priori if all transitions on all states that are

maintained by different state-holders have been already executed or not.

Four approaches for finding and executing events on a state other that

the current state of the crawler in the P2P crawl system.

Reset-Only

• A visited state-holder picks any other state with an unexecuted

event, and returns an execution path with ordered transitions,

starting from the initial state, forcing the visiting crawler to perform a

reset and to traverse this path before reaching the target state.
• Reset-Only is the simplest way for distributively crawling RIAs. However,

this approach results in a high number of resets performed, which may

increase the time required to crawl a given application (cost).

Shortest Path based on local knowledge

• The shortest-path algorithm makes optimal choice for a crawler by

finding the shortest path from its current state to any state with an

unexecuted event the state-holder is responsible for, without

necessarily performing a reset.

• A visited state-holder may use its local transitions knowledge to find

the shortest path from the crawler current state leading to the closest

unexecuted event.
• The number of known transitions to a state-holder remain relatively low

comparing to all executed graph transitions in the RIA model.

Shortest Path based on large knowledge

• Whenever a crawler sends a message to a destination state-holder,

all forwarding state-holders in the chordal ring, i.e. intermediate state-

holders receiving a message that is not designated to them, may also

update their transitions knowledge before forwarding it to the next

state-holder in the chordal ring.

• The transitions knowledge is significantly increased among state-

holders with no message overhead, allowing state-holders to have

more knowledge about the executed transitions, and therefore to

reduce the sizes of the computed shortest paths.

Forward-Exploration

• The Forward-Exploration approach is based on the breadth-first

search and consists of sequentially moving to the neighboring states

from the current state of a visiting crawler.

• In order to prevent different state-holders from visiting states that have

already been visited and has no unexecuted events, state-holders

may share during the forward exploration their knowledge about the

visited states with no unexecuted transitions, along with all executed

transitions on these states, with other state-holders in the network.
• This allows for preventing the states with no unexecuted event that have

been already seen, from getting visited again.

Traditional Web Applications

 The typical interaction between the client and the server in a traditional web application consists of

sending a request for a URL from the client to the server so that the corresponding web page is

downloaded in response for each URL request.

 Each web page is identified by its URL and has only a single state.

Rich Internet Applications

 Modern web technologies gave birth to interactive and more responsive applications, referred to as

RIAs.

 RIAs combine the client-side scripting with new features such as AJAX (Asynchronous JavaScript

and XML).

 JavaScript functions allow the client to modify the currently displayed page, by communicating with

the server asynchronously.

The purpose of a RIA crawler is to automatically exploring states of a rich internet application.

Goal

 Context indexing

 Testing for security

 Building application models

RIA Crawling

Results

 Tested application: http://clipmarks.com

• Total number of states: 2663

• Total number of transitions: 355201

• Average number of events per state: 133

 Simulation settings

• Average communication delay: 1 ms

• Average event execution delay: 11 ms

• Average number of crawlers a state-holder

could handle: 100

 In-depth analysis of the Forward-Exploration approach: Unexecuted events found in different

depths during the Forward Exploration operation

 In-depth analysis of the Forward-Exploration approach: Exchanged messages

Figure 2. Distribution of DOM states among state-holders: Every DOM state is associated

with a state-holder with the largest previous ID

Figure 3. Possible path in the

Reset-Only approach

Figure 4. Possible path in the

shortest path based on local

knowledge approach

Figure 5. Possible path in the

shortest path based on large

knowledge approach

Figure 6. Possible path in the

Forward-Exploration approach

Figure 7. Comparing the different approaches for 5 state-holders and 100 crawler

Figure 8. Exchanged messages with the Forward-Exploration approach for 5 state-holders and 100 crawlers

 The total number of exchanged messages is comparable

for the Reset-Only, the shortest path with local knowledge

and the shortest path with large knowledge.

 The total number of exchanged message with the

Forward-Exploration approach is a little higher than the

one for all the other approaches.

 This is due to the distributed breadth-first search that is

performed by the Forward-Exploration approach when

choosing the next event to explore from a different state.

 The number of resets performed consists of the number of

times a crawler has to come back to the initial state before

reaching a target state (reset cost).

 The shortest path with local knowledge approach slightly

outperforms the Reset-Only approach.

 The shortest path with large knowledge approach is

significantly better than both the Reset-Only and the

shortest path with large knowledge approaches.

 The minimal number of resets performed is obtained with

the Forward-Exploration approach.

 In terms of crawling time, the Forward-Exploration

approach is significantly more efficient than the Reset-

Only and the shortest path with local knowledge

approach, and it slightly outperforms the shortest path

with large knowledge.

Reset-Only SP local knowledge SP large knowledge Forward-Exploration
0

20

40

60

80

100

120

140
Comparing the total crawling time for the different approaches

Approach

C
r
a

w
li

n
g

 t
im

e
 (

in
 s

e
c

o
n

d
s

)

Reset-Only SP local knowledge SP large knowledge Forward-Exploration
0

2

4

6

8

10

12

14

16

x 10
5 Comparing the number of exchanged messages for the different approaches

Approach

N
u

m
b

e
r
 o

f
m

e
s
s

a
g

e
s

Reset-Only SP local knowledge SP large knowledge Forward-Exploration
10

0

10
1

10
2

10
3

10
4

10
5

Comparison of the Total number of resets

Depth Approach

T
o

ta
l

n
u

m
b

e
r
 o

f
re

s
e
ts

 (
L

o
g

-s
c
a

le
)

0 5 10 15 20 25
0

5000

10000

15000

Average number of all exchanged messages per node

Crawling phase number

A
v

e
ra

g
e

 n
u

m
b

e
r
 o

f
a
ll

 e
x

c
h

a
n

g
e

d
 m

e
s
s

a
g

e
s

Positive Execute

Negative Execute

AckJob

Crawler State Info

Forward Exploration

Request Job

Check Termination

Terminate

 The Forward-Exploration message is only used by the

Forward-Exploration approach, while other messages

are used by all approaches.

 A Positive Execute message corresponds to a message

execution from a state-holder to a crawler with an event

to be executed, while a Negative Execute message has

no event to be executed.

 Request Job messages are sent by an idle crawler that

is looking for a job, by asking other state-holders.

 A high number of Request Job messages are sent during

the last crawling phase (before reaching the termination).

 Each depth corresponds to the distance of an

unexecuted event found in a neighboring state from a

crawler current state.

 The unexecuted events found in a non-neighboring state

are unexecuted events that cannot be reached by the

forward exploration.

 An unexecuted event found from a Request Job message

corresponds to an assigned event to an idle crawler.

 Most of the unexecuted events are found in lower depths

and thus are close to the crawler current state.

 The highest depths are reached as we approach the end

of the crawl.

Figure 9. Depths reached with the Forward-Exploration for 5 state-holders and 100 crawlers

0 5 10 15 20 25
0

500

1000

1500

2000

2500

3000

3500

4000

Average number of unexecuted events found in different depths

Crawling phase number

A
v

e
ra

g
e

 u
n

e
x

e
c

u
te

d
 e

v
e

n
ts

 f
o

u
n

d

Depth 0

Depth 1

Depth 2

Depth 3

Depth 4

Depth 5

Depth 6

Unexecuted events found
in a non-neighboring s tate

Unexecuted events
from a Request Job

